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Introduction 
The present study examines the advantages and disadvantages of parallelisation for an            
air-motion simulation as a dynamical system. Air motion is a key factor in weather prediction               
and simulation due to the fact that it affects almost all weather systems; temperature,              
humidity, cloud cover, etc. However, due to time and hardware limits, the present study              
utilises a highly simplified system; using Newton’s mechanical equations and the pressure            
gradient force. In order to test the system thoroughly, an atmosphere will be generated (with               
a fixed seed for repeatability) utilising pseudo-random mass values to unevenly distribute air             
across the system, thereby constructing a semi-realistic initial state from which to simulate             
air motion. 
 
Sir Isaac Newton’s three laws of motion are fundamental to the development of the              
mathematical description of air movement. Specifically the second law of motion, in which             
force, ​F is stated to be the product of mass, ​m​, and acceleration, ​a ​(Atkinson, 1981). This is                  
used to derive the pressure gradient force, which describes the motion of air from high to low                 
pressure (Atkinson, 1981)(Holton, 1992). 
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Where is the mean air density (mass per unit volume) of the air between the air position ρ                  
and the position at the center of the low pressure, ​v is velocity, ​p is pressure, ​x is the                   
distance from the mass of air to the pressure centre and ​t is the time over which the change                   
in velocity is being calculated, in this instance the simulation timestep. From the             
acceleration, we can calculate the velocity at which the air is moving at the end of the                 
timestep, using the equations of motion (Hanrahan and Porkess, 2014). 
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Where ​u is the initial velocity of the air and ​v is the velocity at the end of the timestep.                    
Further, it is also possible to calculate the displacement of the air in the timestep, ​S​. 
 

 ut atS =  +  2
1 2

(1.5) 

ut t S =  + 2
1

ρ
−1

Δx
Δp 2

(1.6) 

 

mailto:samuel.lord@students.plymouth.ac.uk


As air moves within the system, the pressure will also change. As the mass within a                
sub-volume decreases, the density of air within that subvolume will decrease (Zdunkowski            
and Bott, 2004). 
 

ρ = m
V (1.7) 

 
Using the new density, it is possible to recalculate the pressure for the subvolume (Atkinson,               
1981). 

 
ρT  P = R (1.8) 

 
Where ​T is temperature, which in this system will be fixed at 292 K (19 degrees celsius) and                  
R​ is the specific gas constant (287.058 J kg​-1​K​-1​ for dry air (Atkinson, 1981)). 
At this stage, the system is in a state at which mass can be transferred between the                 
subvolumes. In this instance, the proportion of air transferred will be calculated by using the               
displacement of the air. 
 

 S/Wr =  (1.9) 
 
Where W is the width of each subvolume and r is the ratio of the displacement of the air to                    
the width. The mass of air transferred, m​t​, is therefore: 
 

  r mm t =  (1.10) 
 
The process may now repeat to simulate the movement of air over longer periods of time. 

Implementation 
In designing the algorithms used in the CUDA and MPI implementations, Foster’s Design             
Methodology was employed. The extent to which the algorithms comply with this            
methodology is outlined below. 

Partitioning 

The present study parallelises a simplified representation of air movement. Through domain            
decomposition it is possible to reduce the problem into smaller primitive tasks. In this case, a                
3D decomposition results in the the volume of air being subdivided into sub-volumes which              
can be treated as a single block of air in the dynamical system. This allows for the                 
parallelisation of the task as each thread in the implementation can deal with a single               
primitive task. 
The primitive task for each sub-volume is the equations explained in the introduction,             
whereby each element may calculate its state after a given time period, the information is               
shared to re-evaluate the state of the entire system and then the process is repeated as                
necessary. 



 

Criteria Criteria Met? 

The partition defines (at least) an order of        
magnitude more tasks than processors in      
the target computer 

Yes 

Redundant computations and data storage     
avoided as much as possible 

Yes 

Primitive tasks are roughly the same size Yes 

Number of tasks is an increasing function of        
the problem size 

Yes 

Several alternative partitions identified Yes 

 
Table ​1 ​shows to what extent Foster’s checklist for the partitioning element of the design               
process was met. 
Due to the nature of the problem, the number of tasks can be set arbitrarily. This is because                  
the volume of air being dealt with by each task can be decreased to increase the accuracy of                  
the system. For example, if the problem has to deal with a 100 km​3 volume of air, assigning                  
each task a 50 km​3 volume would result in only two tasks, but a highly inaccurate simulation.                 
Equally, subdividing the volume into 0.01 km​3 areas would result in 10,000 tasks, but far               
greater accuracy. Therefore, the tasks can exceed the number of processors by at least one               
order of magnitude, and in fact in so doing increases the accuracy of the system. 
Redundant computations have been eliminated through the reduction of the problem to            
primitive tasks, allowing each parallel unit perform only the computations, and store the data              
relevant to the subvolume it is managing. The primitive tasks vary only in the numbers on                
which the calculations are performed, and are therefore virtually identical at all timesteps for              
all tasks. 
Alternative partitions have been considered in grouping small numbers of sub-volumes per            
primitive tasks however this reduces parallelisation and is unlikely to offer any significant             
performance increase and so the chosen partitioning was selected. 
Functional decomposition has also been considered. The primitive task for each sub-volume            
requires the following steps, also shown in fig. 1. 

1. Calculate pressure differences to neighbours to find along what vector the lower            
pressure is 

2. From the pressure differences calculate the acceleration of the air mass 
3. Using the current speed, acceleration and time step, calculate the new speed of the              

air mass 
4. Calculate the displacement in this time step. 
5. Based on the displacement, transfer a proportion of the mass to the neighbour in the               

direction of the pressure vector. 
6. Using the known volume of the sub-volume and the newly calculated mass,            

recalculate the density of the air in the volume and therefore the pressure. 
 



Due to the fact that each step requires the previous step to have completed prior to the next                  
having the information required to execute, it is not possible to further functionally             
decomposition the tasks. 

 

Communication 

 

Criteria Criteria Met? 

All tasks perform the same number of       
communications 

Yes 

Each tasks only communicates with a small       
number of neighbours 

Yes 

Communication operations can proceed    
concurrently 

~Yes 

Tasks can perform their computations     
concurrently 

Yes 

 
Table 2 ​shows to what extent Foster’s checklist for the communication element of the design               
process was met. 
Each task performs an identical number of communication to all others. This is due to the                
fact that the simulated atmosphere is treated as a taurus where the edges of the               
three-dimensional grid wrap to the opposite side in a similar manner to the real atmosphere.               
This results in each task only communicating with a small number of neighbours (six). This               
occurs twice in each timestep, firstly to get the pressure of surrounding sub-volumes, and              
secondly to transfer the mass of air between subvolumes. The communication performed by             
each task can proceed concurrently because a given subvolume can asynchronously send            
and receive pressure and mass data for all neighbours simultaneously. However, a task             
must wait until it has received data from all neighbours to continue execution. Further,              
computations can be performed concurrently by all tasks until communication must occur. 

Agglomeration 

The implementation presented has not been agglomerated to high degree. This is due to the               
fact that the primitive tasks created through domain decomposition are well suited to             
parallelisation. An alternative agglomeration was considered in which tasks would be made            
up of a small number of subvolumes (which may scale with problem size) and information               
would be collated within the group and then be disseminated to other groups. However, the               
alternative implementation would suffer the same shortcomings (in serialisation bottlenecks,          



fig. 2) as the selected implementation, with added complexity in implementation           
requirements, and so was discounted as a viable option. 

 
 
 

Criteria Criteria Met? 

Agglomeration should reduce   
communication costs by increasing locality 

Yes 

Any computation replication should not     
outweigh its costs 

Yes 

Any data replication should not limit      
scalability 

~Yes 

Should produce tasks with similar     
computation and communication costs 

Yes 

The number of tasks can still scale with        
problem size 

Yes 

There is sufficient concurrency for     
target/future computers 

Yes 

The number of tasks cannot be made       
smaller without introducing load    
imbalancing/increasing development  
costs/reducing scalability 

Yes 

The trade-off between the chosen     
agglomeration and cost of modification to      
existing code is reasonable 

N/A 

 
Table 3 ​shows to what extent Foster’s checklist for the agglomeration element of the design               
process was met. 
Communication costs have been reduced by opting to arrange processes in a 3-dimensional             
taurus, and having processes only communicate with their neighbours. 
There has been no computation replication, thereby fulfilling the requirement not to increase             
costs through replication. 
In any reasonable simulation, the data replication would have very little impact on the ability               
of the algorithm to scale. However, in extreme cases of the CUDA implementation, the              
requirements of the data to be copied to the device would result in an upper limit. The MPI                  



implementation, if run in a distributed manner, fully meets the criteria of data replication not               
limiting scalability. 
In both instances of the algorithm, all tasks perform near-identical computations and            
communications. 
Concurrency may always be added to the system by reducing the volume of each              
subvolume, thereby increasing the number of subvolumes being simulated. Equally, the size            
of the problem can be increased trivially by increasing the size of the atmosphere being               
simulated. In doing so, the number of tasks available increases and therefore the             
implementation allows for sufficient concurrency for both the target computer (in this case a              
desktop computer with a GTX 680 graphics card), and almost any future computer. The              
algorithm would suffer in increased complexity if the tasks were further reduced in size, due               
to the difficulties in synchronizing access to each subvolume to perform each calculation             
being performed. 

Mapping 

Both the CUDA and MPI algorithms are constructed from the same basic premise; each              
thread (CUDA) or process (MPI) deals with a single subvolume in parallel, synchronising the              
communication between threads or processes as required to ensure the produced data is             
accurate. The main difference between MPI and CUDA is the method by which the              
information is communicated and this has a direct impact on the way in which the tasks are                 
assigned to processors. Communication is required for the transfer of mass between            
subvolumes and the synchronization of mass changes at the end of every timestep, fig 2. In                
the MPI implementation processes are arranged in a 3D taurus. Mass transfers are achieved              
through direct communication between neighbouring processes. For the synchronization of          
the entire atmosphere at the end of each timestep, messages are sent to the process with                
rank 0. From process 0, the data redistributed to all processes. A mesh network was chosen                
due to the fact that the cost of scaling remaining constant, and being relatively simple to                
implement (Gropp, n.d.). 
In CUDA, planes of subvolumes are separated across a one dimensional grid of blocks, in               
which a two dimensional array of threads each process a single subvolume. In order to               
synchronize the atmosphere, each thread accesses a different element in a global array to              
store the updated information for the subvolume it is concerned with, at the end of each                
timestep. For air mass transfer, a thread may directly accesses a neighbour for             
communication, with syncronised access to memory to ensure no race conditions may occur.             
Given an even distribution of air movement (i.e an equal chance air is transferred up, down,                
left, right, forwards or backwards from a subvolume in a timestep), there is a two in three                 
chance of a local, non-cross-block communication. 
Also, due to the decomposition performed, the number of communications performed by            
each element remains fixed irrelevant of the project size. This is because air may only travel                
in one direction and only to adjacent neighbours in each timestep. Therefore, in the worst               
case, there is a maximum of communications performed and a best case of when the      N         0    
system is perfectly balanced (however this is exceedingly unlikely), where ​N is the number of               
subvolumes in the dynamical system, excluding the synchronization at the end of each             
timestep. 



Evaluation 
Two experiments were conducted on     
each algorithm to evaluate their     
performance. In both tests, clock     
ticks were measured for the duration      
of the simulation and then converted      
to a value in seconds using the       
number of clock ticks per second.      
The resultant timing value was     
measured to three decimal places.     
For CUDA, the timing was performed      
from the invocation of the kernel until       
the result was copied from the device       
back to the host. In the case of MPI,         
the time was taken from the call to        
the ‘Simulate’ function until the     
process with rank 0 returned from the       
function, which included the final     
collation of data back to rank 0. 
Firstly, scalability was tested by     
varying the size of the simulated      
atmosphere whilst the number of     
iterations remained fixed. As can be      
seen when comparing fig. 3 and fig.       
4, both CUDA and MPI iteration times       
increased with a similar profile, with the time consistently increasing as the size of simulation               
increased, with the exception of the 512 m​3 simulation in the MPI experiment. The present               
study postulates that due to 512 being a 2​n value, some internal MPI optimisation was taken                
advantage of and therefore reduced communication overheads in that instance. Although           
both algorithms had a similar profile, the MPI implementation saw an increase in six orders               

of magnitude in the time     
taken to process the    
simulation between the first    
and last test. In comparison,     
the CUDA implementation   
performed better in all    
instances of the tests except     
for the trivial instance of 1m​3​.      
The CUDA algorithm also    
saw a far lesser increase     
between the smallest and    
largest simulation with an    
increase of only two orders of      
magnitude. 



 
Secondly, process time was measured whilst the number of iterations was varied. The size              
of the volume was fixed at 3m​3 to keep testing times reasonable, based on the results of the                  
first experiment. Initially a run of zero iterations was conducted to measure the setup              
overhead for both CUDA and MPI. This resulted in an average overhead of 0.017s and               
0.000s respectively. The   
lesser overhead cost for MPI     
is to be expected, as there is       
an inherent overhead in    
launching a kernel that is not      
present in the equivalent    
function call in MPI. However     
the communication in the MPI     
implementation introduces  
overheads that can be clearly     
seen in both experiments in     
the increased times. It is also      
possible that the MPI    
implementation was limited   
by overheads introduced through running all MPI process on a single node. This caused              
significant memory consumption (upwards of 90%) in several tests, and likely negatively            
impacted the performance of the algorithm. As such, running the MPI algorithm in a              
distributed manner across several nodes may see a significant increase in performance, if             
not offset by increased communication time overheads. 
Both MPI and CUDA algorithms showed a linear increase (fig. 5 and fig 6) in processing time                 
with respect to the number of iterations required. However, as with the previous experiment,              
cuda processing times were orders of magnitudes faster in non-trivial instances, with the             
slowest average processing time of 0.062s in comparison to MPI’s 16.339s, a difference of              
~263.5 times. 

Conclusion 
Overall, both algorithms can successfully process and simulate the dynamical system at a             
large scale. However, the CUDA algorithm shows a significant advantage over the MPI             
equivalent in both test scenarios. This is likely due to the lack of warp divergence in the                 
CUDA implementation. Nonetheless, improvements could still be made to the CUDA           
algorithm. For example, warps may be underutilised in the current implementation due to the              
fact that block dimensions are calculated purely from the dimensions of the atmosphere             
being simulated. 
Similarly, improvements could be made to the MPI algorithm. More communication is used             
than is required in the present implementation of the MPI algorithm. This is due to limitations                
in the MPI framework require that create a situation in which a mass transfer of zero is                 
transmitted to neighbours when no transfer is required. This is because there is currently no               
way for a process to calculate which neighbours need to transfer mass into the subvolume it                
is managing. Even without the outline changes, it may be that MPI can perform better than                
has been shown in the present study. This could be achieved by running the algorithm over                



multiple nodes, thereby significantly decreasing the memory limitations seen during these           
experiments. Further, an implementation in which the CUDA algorithm is embedded in an             
MPI distributed system may show additional increases in performance for larger problem            
sizes by benefitting from the strengths of both algorithms; distributing large subsections of             
the atmosphere to separate nodes via MPI, on which CUDA is utilised to do the heavy lifting                 
before passing the subset back to MPI to collate the data for the next timestep. 
Finally, it is worth noting the differences in scalability costs as each algorithm reaches its               
limits. In the case of the MPI algorithm run on a single node, where this study has found                  
memory to be a significant limiting factor, the cost of scaling hardware is relatively low, due                
to the addition of more RAM increasing the potential problem size the algorithm is capable               
of. Conversely, in CUDA, as the algorithm reaches its limits, a better graphics card would be                
required, requiring upwards of 10 times the cost for improvement. 

Future Work 
The present study would be well supported by further work investigating the combination of              
the CUDA and MPI algorithms. It may also be beneficial to compare the CUDA, MPI and                
mixed implementations with a serialized implementation to better compare costs and           
overheads for all parallel implementations. Further, the analysis of implementation time and            
detailed memory profiling of the implementations was out of scope of the current study and               
extended investigations in these areas may better inform the decision of which framework is              
best suited to air motion dynamical systems. 
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