
Parallel Computation and Distributed Systems Coursework
Samuel Lord, Undergraduate, School of Computing and Mathematics, University of Plymouth

samuel.lord@students.plymouth.ac.uk

Introduction
The present study examines the advantages and disadvantages of parallelisation for an
air-motion simulation as a dynamical system. Air motion is a key factor in weather prediction
and simulation due to the fact that it affects almost all weather systems; temperature,
humidity, cloud cover, etc. However, due to time and hardware limits, the present study
utilises a highly simplified system; using Newton’s mechanical equations and the pressure
gradient force. In order to test the system thoroughly, an atmosphere will be generated (with
a fixed seed for repeatability) utilising pseudo-random mass values to unevenly distribute air
across the system, thereby constructing a semi-realistic initial state from which to simulate
air motion.

Sir Isaac Newton’s three laws of motion are fundamental to the development of the
mathematical description of air movement. Specifically the second law of motion, in which
force, ​F is stated to be the product of mass, ​m​, and acceleration, ​a ​(Atkinson, 1981). This is
used to derive the pressure gradient force, which describes the motion of air from high to low
pressure (Atkinson, 1981)(Holton, 1992).

 maF = (1.1)

− ρ
1

Δx
Δp = Δt

Δv = a (1.2)

Where is the mean air density (mass per unit volume) of the air between the air position ρ
and the position at the center of the low pressure, ​v is velocity, ​p is pressure, ​x is the
distance from the mass of air to the pressure centre and ​t is the time over which the change
in velocity is being calculated, in this instance the simulation timestep. From the
acceleration, we can calculate the velocity at which the air is moving at the end of the
timestep, using the equations of motion (Hanrahan and Porkess, 2014).

 u atv = + (1.3)
u tv = + ρ

−1
Δx
Δp

(1.4)

Where ​u is the initial velocity of the air and ​v is the velocity at the end of the timestep.
Further, it is also possible to calculate the displacement of the air in the timestep, ​S​.

 ut atS = + 2
1 2

(1.5)

ut t S = + 2
1

ρ
−1

Δx
Δp 2

(1.6)

mailto:samuel.lord@students.plymouth.ac.uk

As air moves within the system, the pressure will also change. As the mass within a
sub-volume decreases, the density of air within that subvolume will decrease (Zdunkowski
and Bott, 2004).

ρ = m
V (1.7)

Using the new density, it is possible to recalculate the pressure for the subvolume (Atkinson,
1981).

ρT P = R (1.8)

Where ​T is temperature, which in this system will be fixed at 292 K (19 degrees celsius) and
R​ is the specific gas constant (287.058 J kg​-1​K​-1​ for dry air (Atkinson, 1981)).
At this stage, the system is in a state at which mass can be transferred between the
subvolumes. In this instance, the proportion of air transferred will be calculated by using the
displacement of the air.

 S/Wr = (1.9)

Where W is the width of each subvolume and r is the ratio of the displacement of the air to
the width. The mass of air transferred, m​t​, is therefore:

 r mm t = (1.10)

The process may now repeat to simulate the movement of air over longer periods of time.

Implementation
In designing the algorithms used in the CUDA and MPI implementations, Foster’s Design
Methodology was employed. The extent to which the algorithms comply with this
methodology is outlined below.

Partitioning

The present study parallelises a simplified representation of air movement. Through domain
decomposition it is possible to reduce the problem into smaller primitive tasks. In this case, a
3D decomposition results in the the volume of air being subdivided into sub-volumes which
can be treated as a single block of air in the dynamical system. This allows for the
parallelisation of the task as each thread in the implementation can deal with a single
primitive task.
The primitive task for each sub-volume is the equations explained in the introduction,
whereby each element may calculate its state after a given time period, the information is
shared to re-evaluate the state of the entire system and then the process is repeated as
necessary.

Criteria Criteria Met?

The partition defines (at least) an order of
magnitude more tasks than processors in
the target computer

Yes

Redundant computations and data storage
avoided as much as possible

Yes

Primitive tasks are roughly the same size Yes

Number of tasks is an increasing function of
the problem size

Yes

Several alternative partitions identified Yes

Table ​1 ​shows to what extent Foster’s checklist for the partitioning element of the design
process was met.
Due to the nature of the problem, the number of tasks can be set arbitrarily. This is because
the volume of air being dealt with by each task can be decreased to increase the accuracy of
the system. For example, if the problem has to deal with a 100 km​3 volume of air, assigning
each task a 50 km​3 volume would result in only two tasks, but a highly inaccurate simulation.
Equally, subdividing the volume into 0.01 km​3 areas would result in 10,000 tasks, but far
greater accuracy. Therefore, the tasks can exceed the number of processors by at least one
order of magnitude, and in fact in so doing increases the accuracy of the system.
Redundant computations have been eliminated through the reduction of the problem to
primitive tasks, allowing each parallel unit perform only the computations, and store the data
relevant to the subvolume it is managing. The primitive tasks vary only in the numbers on
which the calculations are performed, and are therefore virtually identical at all timesteps for
all tasks.
Alternative partitions have been considered in grouping small numbers of sub-volumes per
primitive tasks however this reduces parallelisation and is unlikely to offer any significant
performance increase and so the chosen partitioning was selected.
Functional decomposition has also been considered. The primitive task for each sub-volume
requires the following steps, also shown in fig. 1.

1. Calculate pressure differences to neighbours to find along what vector the lower
pressure is

2. From the pressure differences calculate the acceleration of the air mass
3. Using the current speed, acceleration and time step, calculate the new speed of the

air mass
4. Calculate the displacement in this time step.
5. Based on the displacement, transfer a proportion of the mass to the neighbour in the

direction of the pressure vector.
6. Using the known volume of the sub-volume and the newly calculated mass,

recalculate the density of the air in the volume and therefore the pressure.

Due to the fact that each step requires the previous step to have completed prior to the next
having the information required to execute, it is not possible to further functionally
decomposition the tasks.

Communication

Criteria Criteria Met?

All tasks perform the same number of
communications

Yes

Each tasks only communicates with a small
number of neighbours

Yes

Communication operations can proceed
concurrently

~Yes

Tasks can perform their computations
concurrently

Yes

Table 2 ​shows to what extent Foster’s checklist for the communication element of the design
process was met.
Each task performs an identical number of communication to all others. This is due to the
fact that the simulated atmosphere is treated as a taurus where the edges of the
three-dimensional grid wrap to the opposite side in a similar manner to the real atmosphere.
This results in each task only communicating with a small number of neighbours (six). This
occurs twice in each timestep, firstly to get the pressure of surrounding sub-volumes, and
secondly to transfer the mass of air between subvolumes. The communication performed by
each task can proceed concurrently because a given subvolume can asynchronously send
and receive pressure and mass data for all neighbours simultaneously. However, a task
must wait until it has received data from all neighbours to continue execution. Further,
computations can be performed concurrently by all tasks until communication must occur.

Agglomeration

The implementation presented has not been agglomerated to high degree. This is due to the
fact that the primitive tasks created through domain decomposition are well suited to
parallelisation. An alternative agglomeration was considered in which tasks would be made
up of a small number of subvolumes (which may scale with problem size) and information
would be collated within the group and then be disseminated to other groups. However, the
alternative implementation would suffer the same shortcomings (in serialisation bottlenecks,

fig. 2) as the selected implementation, with added complexity in implementation
requirements, and so was discounted as a viable option.

Criteria Criteria Met?

Agglomeration should reduce
communication costs by increasing locality

Yes

Any computation replication should not
outweigh its costs

Yes

Any data replication should not limit
scalability

~Yes

Should produce tasks with similar
computation and communication costs

Yes

The number of tasks can still scale with
problem size

Yes

There is sufficient concurrency for
target/future computers

Yes

The number of tasks cannot be made
smaller without introducing load
imbalancing/increasing development
costs/reducing scalability

Yes

The trade-off between the chosen
agglomeration and cost of modification to
existing code is reasonable

N/A

Table 3 ​shows to what extent Foster’s checklist for the agglomeration element of the design
process was met.
Communication costs have been reduced by opting to arrange processes in a 3-dimensional
taurus, and having processes only communicate with their neighbours.
There has been no computation replication, thereby fulfilling the requirement not to increase
costs through replication.
In any reasonable simulation, the data replication would have very little impact on the ability
of the algorithm to scale. However, in extreme cases of the CUDA implementation, the
requirements of the data to be copied to the device would result in an upper limit. The MPI

implementation, if run in a distributed manner, fully meets the criteria of data replication not
limiting scalability.
In both instances of the algorithm, all tasks perform near-identical computations and
communications.
Concurrency may always be added to the system by reducing the volume of each
subvolume, thereby increasing the number of subvolumes being simulated. Equally, the size
of the problem can be increased trivially by increasing the size of the atmosphere being
simulated. In doing so, the number of tasks available increases and therefore the
implementation allows for sufficient concurrency for both the target computer (in this case a
desktop computer with a GTX 680 graphics card), and almost any future computer. The
algorithm would suffer in increased complexity if the tasks were further reduced in size, due
to the difficulties in synchronizing access to each subvolume to perform each calculation
being performed.

Mapping

Both the CUDA and MPI algorithms are constructed from the same basic premise; each
thread (CUDA) or process (MPI) deals with a single subvolume in parallel, synchronising the
communication between threads or processes as required to ensure the produced data is
accurate. The main difference between MPI and CUDA is the method by which the
information is communicated and this has a direct impact on the way in which the tasks are
assigned to processors. Communication is required for the transfer of mass between
subvolumes and the synchronization of mass changes at the end of every timestep, fig 2. In
the MPI implementation processes are arranged in a 3D taurus. Mass transfers are achieved
through direct communication between neighbouring processes. For the synchronization of
the entire atmosphere at the end of each timestep, messages are sent to the process with
rank 0. From process 0, the data redistributed to all processes. A mesh network was chosen
due to the fact that the cost of scaling remaining constant, and being relatively simple to
implement (Gropp, n.d.).
In CUDA, planes of subvolumes are separated across a one dimensional grid of blocks, in
which a two dimensional array of threads each process a single subvolume. In order to
synchronize the atmosphere, each thread accesses a different element in a global array to
store the updated information for the subvolume it is concerned with, at the end of each
timestep. For air mass transfer, a thread may directly accesses a neighbour for
communication, with syncronised access to memory to ensure no race conditions may occur.
Given an even distribution of air movement (i.e an equal chance air is transferred up, down,
left, right, forwards or backwards from a subvolume in a timestep), there is a two in three
chance of a local, non-cross-block communication.
Also, due to the decomposition performed, the number of communications performed by
each element remains fixed irrelevant of the project size. This is because air may only travel
in one direction and only to adjacent neighbours in each timestep. Therefore, in the worst
case, there is a maximum of communications performed and a best case of when the N 0
system is perfectly balanced (however this is exceedingly unlikely), where ​N is the number of
subvolumes in the dynamical system, excluding the synchronization at the end of each
timestep.

Evaluation
Two experiments were conducted on
each algorithm to evaluate their
performance. In both tests, clock
ticks were measured for the duration
of the simulation and then converted
to a value in seconds using the
number of clock ticks per second.
The resultant timing value was
measured to three decimal places.
For CUDA, the timing was performed
from the invocation of the kernel until
the result was copied from the device
back to the host. In the case of MPI,
the time was taken from the call to
the ‘Simulate’ function until the
process with rank 0 returned from the
function, which included the final
collation of data back to rank 0.
Firstly, scalability was tested by
varying the size of the simulated
atmosphere whilst the number of
iterations remained fixed. As can be
seen when comparing fig. 3 and fig.
4, both CUDA and MPI iteration times
increased with a similar profile, with the time consistently increasing as the size of simulation
increased, with the exception of the 512 m​3 simulation in the MPI experiment. The present
study postulates that due to 512 being a 2​n value, some internal MPI optimisation was taken
advantage of and therefore reduced communication overheads in that instance. Although
both algorithms had a similar profile, the MPI implementation saw an increase in six orders

of magnitude in the time
taken to process the
simulation between the first
and last test. In comparison,
the CUDA implementation
performed better in all
instances of the tests except
for the trivial instance of 1m​3​.
The CUDA algorithm also
saw a far lesser increase
between the smallest and
largest simulation with an
increase of only two orders of
magnitude.

Secondly, process time was measured whilst the number of iterations was varied. The size
of the volume was fixed at 3m​3 to keep testing times reasonable, based on the results of the
first experiment. Initially a run of zero iterations was conducted to measure the setup
overhead for both CUDA and MPI. This resulted in an average overhead of 0.017s and
0.000s respectively. The
lesser overhead cost for MPI
is to be expected, as there is
an inherent overhead in
launching a kernel that is not
present in the equivalent
function call in MPI. However
the communication in the MPI
implementation introduces
overheads that can be clearly
seen in both experiments in
the increased times. It is also
possible that the MPI
implementation was limited
by overheads introduced through running all MPI process on a single node. This caused
significant memory consumption (upwards of 90%) in several tests, and likely negatively
impacted the performance of the algorithm. As such, running the MPI algorithm in a
distributed manner across several nodes may see a significant increase in performance, if
not offset by increased communication time overheads.
Both MPI and CUDA algorithms showed a linear increase (fig. 5 and fig 6) in processing time
with respect to the number of iterations required. However, as with the previous experiment,
cuda processing times were orders of magnitudes faster in non-trivial instances, with the
slowest average processing time of 0.062s in comparison to MPI’s 16.339s, a difference of
~263.5 times.

Conclusion
Overall, both algorithms can successfully process and simulate the dynamical system at a
large scale. However, the CUDA algorithm shows a significant advantage over the MPI
equivalent in both test scenarios. This is likely due to the lack of warp divergence in the
CUDA implementation. Nonetheless, improvements could still be made to the CUDA
algorithm. For example, warps may be underutilised in the current implementation due to the
fact that block dimensions are calculated purely from the dimensions of the atmosphere
being simulated.
Similarly, improvements could be made to the MPI algorithm. More communication is used
than is required in the present implementation of the MPI algorithm. This is due to limitations
in the MPI framework require that create a situation in which a mass transfer of zero is
transmitted to neighbours when no transfer is required. This is because there is currently no
way for a process to calculate which neighbours need to transfer mass into the subvolume it
is managing. Even without the outline changes, it may be that MPI can perform better than
has been shown in the present study. This could be achieved by running the algorithm over

multiple nodes, thereby significantly decreasing the memory limitations seen during these
experiments. Further, an implementation in which the CUDA algorithm is embedded in an
MPI distributed system may show additional increases in performance for larger problem
sizes by benefitting from the strengths of both algorithms; distributing large subsections of
the atmosphere to separate nodes via MPI, on which CUDA is utilised to do the heavy lifting
before passing the subset back to MPI to collate the data for the next timestep.
Finally, it is worth noting the differences in scalability costs as each algorithm reaches its
limits. In the case of the MPI algorithm run on a single node, where this study has found
memory to be a significant limiting factor, the cost of scaling hardware is relatively low, due
to the addition of more RAM increasing the potential problem size the algorithm is capable
of. Conversely, in CUDA, as the algorithm reaches its limits, a better graphics card would be
required, requiring upwards of 10 times the cost for improvement.

Future Work
The present study would be well supported by further work investigating the combination of
the CUDA and MPI algorithms. It may also be beneficial to compare the CUDA, MPI and
mixed implementations with a serialized implementation to better compare costs and
overheads for all parallel implementations. Further, the analysis of implementation time and
detailed memory profiling of the implementations was out of scope of the current study and
extended investigations in these areas may better inform the decision of which framework is
best suited to air motion dynamical systems.

References
Atkinson, B. (1981). ​Dynamical meteorology​. London: Methuen, pp.4-5,12,21.

Gropp, W. (n.d.). ​Process Topology and MPI​.

Hanrahan, V. and Porkess, R. (2014). ​Additional mathematics for OCR​. London: Hodder
Education.

Holton, J. (1992). ​An introduction to dynamic meteorology. 3rd ed​. San Diego: Academic
Press, pp.7,475.

Zdunkowski, W. and Bott, A. (2004). ​Thermodynamics of the atmosphere​. New York:
Cambridge University Press, p.6.

